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For  indistinguishable molecules: 

Partition functions for non-interacting molecular gas systems 

molecule translational rotational vibrational electronic nuclear spin         

In the simplest approximation, the energy of the molecule is decomposed into 

independent contributions from the degrees of freedon: 

The one-molecule canonical ensemble partition function decomposes to partition 

functions for different degrees of freedom: 

( , )molecule trans rot vib elec nucq V T q q q q q

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( )molecule CM CM rot vib rel elec nucH H H H r H H     R

The energy (Hamiltonian) of molecules can be decomposing into independent 

parts related to different molecular degrees of freedom: 
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Define 

- center of mass position, Rcm,  

- relative coordinates, r, as,  

In terms of these coordinates, the position vectors of the two particles can therefore be 

written as, 

Molecular motion: Diatomic molecules 

Consider atoms 1 and 2 interacting with a force 

which is a function of the distance between the 

two atoms, F(|r1-r2|) = F(r)  

r1 r2 

x 

y 

Rcm 

r 

The second time derivatives of r1 and r2 can 

be written in terms of time derivatives of Rcm 

and r 

 2 2
1 1 2 2 1 2

1 1
,

2 2
E T U m v m v U     r r

The total energy for the two atom system is 
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Substituting into the equations motion gives new equations for the center of mass and 

relative motion: 
In the new coordinate system,  

- Motions of the center of mass and relative coordinates are 

not coupled 

- The center of mass moves as a free particle subject to no 

force 

- The relative motion is described by a particle of mass 12 

moving under a force F(r).    

Molecular motion: Diatomic molecules, separating motions 

Rather than Cartesian coordinates r  

{x, y, z}, the relative motion is described 

in the polar coordinate system  

sin cos

sin sin
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y r
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Showing time derivatives 

with the “dot” notation 

introduced by Newton: 

dx
x

dt
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Molecular motion: Diatomic molecules, separating motions 

The energy is broken down to independent contributions from translation of the “molecule” 

as a whole, and “intramolecular” rotations and vibrations. 

   2 2
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A procedure is carried out to show that for polyatomic molecules, the mechanical energy is 

separated into translational motion of the center of mass and rotational - vibrational 

intermolecular motions (Wilson, Decius, Cross: Molecular Vibrations: The theory of 

Infrared and Raman Vibrational Spectra)  

The total energy in the center of mass and relative position frame becomes 

Changing the relative position to polar coordinates allows separation of: 

• Center of mass motion (involving changing Rcm) 

• Vibrational motion (involving changing r)  

• Rotational motion (involving change of  and ϕ) 
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The Pauli Exclusion Principle and Distributing Molecules Among States  

Bosons 

(integer spin) 

● ● ● ● ● ● ● ● 

● ● ● ● ● ● 

● ● ● ● 

● ● 

● ● 

● ● 

● ●  

● ● 

● 

Fermions 

(half-integer spin) 

●  

● 

● 

Boltzmann Statistics 

(Available states much 

greater than number of 

particles) ! !jj
W N a 

aj = 0, 1 

! !jj
W N a 

aj = 0, 1, 2, … 

Wave functions are 

symmetric wrt exchange 

Wave functions are 

antisymmetric wrt exchange 
Classical mechanics can 

describe the system 

When calculating the partition function, the proper symmetry of the 

wavefunction and its implications on distributions among levels must be 

considered 

!
!

1!1!1! 1!

N
W N 
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Calculating Partition Functions: How large are energy gaps between states? 

Δε 

kT 

• Low temperature limit; 

• Discrete energy levels are used 

• Sum over energy levels   
kT E

kT E

Is the thermal energy (≈ kT)  small or large compared to 

the difference between energy levels? 

 

The relative magnitude of the thermal energy and the 

gaps between energy levels determines the procedure 

used to evaluate the partition function. 
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p q

p q p q

• High temperature limit; 

• Energy levels treated as continuous (semiclassical approximation) 

• Integrate over energy levels   

It is useful to express energy separations in terms of temperature units kT; 

Δε = kT is an energy separation equivalent to an average thermal (kinetic) energy 
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High and low temperature limits 

Δε 
kT 

1 eV = 11,600 K = 96.485 kJ/mol   1/40 eV = 300 K (room temperature) 

1 cm-1 = 1.44 K    

Energy level separations are expressed as “characteristic 

temperatures”: Θ = Δε / k  

 

Low T limit: 

High T limit:    

T 
T 

Translational states:  3h2/8mL2 ≈ 10-17 K (always high T limit) 

Rotational states:   Usually Θrot < 2 K (most gases in the high T limit) 

Vibrational states:  hν0 ~ 0.025 to 0.5 eV (200 to 4000 cm-1) 

                               (300 K is low T for molecules, high T for solids) 

Electronic state:   Δε ~ 0.05 - 20 eV (always low T limit)  

Nuclear spin states:  Δε = 0 in the absence of magnetic field 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( )CM CM rot vib rel elec nucH H H H r H H     R



Ideal gas: Translational degrees of freedom for center of mass motion 
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The ratio of h2/8mkT is very small so the sum is approximated by an integral:  

The particle in a cube is used to represent a simple gas of monatomic molecules 

The translational partition function for each independent molecule 

1/22

0
xI e dx 
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8 
Use this standard integral:  

f(x) Riemann sum 
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The partition function of the system of N 

indistinguishable molecules 

Ideal gas: Thermodynamic variables from the translational partition function   
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Thermodynamic variables 
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Ideal gas equation of state! 

Same expression as 

classical mechanics 

Sackur-Tetrode equation 
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Determining the chemical potential from the partition function   
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Chemical potential of an ideal gas 

• The chemical potential is the free energy change if a molecule is added or 

removed from the system  
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Effect of electronic states on the monatomic ideal gas partition function 

The analysis above is for an ideal gas where atoms / molecules are in the ground 

electronic state in the absence of a magnetic field.   

 

At high temperatures, some atoms may have accessible electronically excited levels.  

• The electronic levels are independent of the translational motion of the atoms 

  qmolecule(V,T)=qtrans(V,T) qnuc(T)qelec(T) 

kT

elec

kT

elec

kT

elec

elec

kT

elecelec

eee

eTq elec

/

3,

/

2,

/0

1,

/

1312

)(

















Usually only a few excited electronic levels have energies low enough to be 

accessible at T < 1000 K. Only one to two terms in the expansion of the partition 

function contribute significantly: 

1 = 0 

Electronic levels usually have energy gaps between 0.05 - 20 eV 

1 eV ↔ 38.94 kT ↔ 12,000 K   
Δε12 

ω1 

ω2 

Determine the contributions of electronic degree of freedom to thermodynamic 

variables 
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Atom Electronic 

configuration 

Term symbol /  
(2S+1) LJ 

Degeneracy Energy / eV 

H 

 

1s1 

2p1, 2s1, 2p1 

2S1/2 
2P1/2,

 2S1/2,
2P3/2 

2 

2, 2, 4 

0 

10.20,~10.20,~10.20  

He 

 

1s2 

1s12s1 

1S0 
3S1 

1 

3 

0 

19.82 

Li 

 

1s22s1 

1s22p1 

2S1/2 
2P1/2 

2 

2 

0 

1.85 

O 

 

 

1s22s22p4 

1s22s22p4 

1s22s22p4 

1s22s22p4 

3P2 
3P1 
3P0 
1D2 

5 

3 

1 

5 

0 

0.02 

0.03 

1.97 

F 1s22s22p5 

1s22s22p5 

2P3/2 
2P1/2 

4 

2 

0 

0.05 

Electronic states of gas phase atomic species 

Total angular momentum 

J = L + S, L + S – 1, …, | L – S| 

S Spin angular momentum 

L Orbital angular momentum 

Spin - orbital coupling affects the electronic energy 
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The six degrees of freedom for a diatomic molecule in Cartesian coordinates: 

{x1,y1,z1, x2,y2,z2} 

• Translational motion of the center of mass: {Rcm,x , Rcm,y, Rcm,z} 

• Rotational  motion of the molecule: {θ,ϕ} 

• Vibrational motion of the two atoms with respect to each other: {rrel} 

In the simplest approximation, the motion is described in terms of independent 

motions: 

 2 2 2 2 2 21
1 1 1 2 2 2 1 1 1 2 2 22

( , , , , , )x y z x y zm
H p p p p p p U x y z x y z      

     
2

2 2 2
1 1 1 2 2 2 1 2 1 2 1 2 0

1
( , , , , , )

2
U x y z x y z k x x y y z z r

 
       

 

Diatomic ideal gas: The rotational – vibrational degrees of freedom 
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The Hamiltonian can be separated into different contributions: 

ˆ ˆ ˆ ˆ( ) ( , ) ( )molecule CM CM rot vib relH H H H r   R

Statistical Mechanics of Diatomic Ideal Gas 

We assume the range of the vibrations are small and this gives the rigid rotor – 

harmonic oscillator approximation 
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Electronic Partition Function for Diatomic Molecules 

For molecules, the electronic energy of the ground electronic state is measured 

with respect to the sum of the electronic energies of the separate atoms  

/ /2
1 2

( )
D kT kTe

elec e eq T e e
  

  

Orbital angular momentum of molecular 

electronic states are shown with capital 

Greek letters in the molecular term symbol.  

Degeneracy of ground molecular state 

Solution of the Schrödinger equation gives a set of energy levels for any atom / 

molecule which have large energy gaps. 

Internuclear separation 
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Quantum mechanics of diatomic electronic - vibrational – rotational states 

  
2

0 0( ) 1 exp ( )Morse rel relU r D r r   

Bond energies are accurately represented by the anharmonic Morse potential with dissociation 

energy, De. 

The vibrational levels of the Morse potential converge to a continuum at high energies. 
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 1
, 02harm n n h nh      

• Dissociation energies (De) are large and at normal temperatures diatomic 

molecules remain bound to each other 

• At normal temperatures, the molecules are confined near the potential minimum 

• The harmonic oscillator is a good approximation at low energies 

• At low energies, the range of vibrations 

are small relative to the bond length 

• Under these conditions, the rigid-rotor 

is a good approximation for the 

rotational motion of the molecule 

The vibrational states of a diatomic molecule 

,, , , ,// / / /
( , ) j roti trans k vib elec s nuckTkT kT kT kT

molecule i j k s

trans rot vib elec nuc

q V T e e e e e

q q q q q

      




    

Rigid rotor – harmonic oscillator approximation for the partition function of a diatomic molecule 
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Vibrational Partition Function for the Harmonic Oscillator 

/ ( 1/2) / /2 /,
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The geometric series for x < 1 
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The partition function High temperature limit of 

the partition function 
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Substitute the quantized energy levels of the harmonic oscillator in the partition 

function 
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Interpretation of the heat capacity 

0

0.2
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0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

T/Θv 

T/Θv 

CV/NK 

CV/NK 

Δε 

As the thermal energy 

becomes larger than 

the energy gap, heat 

capacity becomes a 

constant value 

Heat capacity shows the transfer between kinetic energy (temperature) and potential 

energy 

0

1

2

3

4

0 1 2 3
T/Θv 

Evib/NK 
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Statistical mechanics of rotational degrees of freedom: Rigid rotor 

   
2

, 2
1 1

8
rot J

h
J J J J B

I



   

Energy levels of the rigid rotor 

• J is the rotational quantum number  

• I is the moment of inertia of the molecule with 

respect to the center of mass (                             ) 

• B is the rotational constant 

• The rotational state wave functions correspond to 

the spherical harmonics (see H atom in quantum 

chemistry) 

• The wave functions  have even and odd symmetry 

(S, P, D, F, … orbital angular dependences) 

• Degeneracy of each energy level is 2J + 1 

J = 0  

J = 1  

J = 2  

2B 6B 

…
 

2 2
1 1 2 2I m r m r 
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Symmetry of wave functions for diatomic molecules (1) 

The Pauli Exclusion Principle 

General Chemistry:  

- No two electrons in orbitals can have the same four quantum numbers. 

- Electrons in the same atomic or molecular orbitals must have opposite spins   

Physical / Quantum Chemistry: 

- The wave function for an atomic or molecular system must be anti-symmetric 

with respect to exchange of any pair of electrons (Fock – Slater determinant). 

This guaranties that each orbital only contains two electrons.  

 0
1

1 (1)1 (2) (1) (2) (1) (2)
2

s s      

 

(1) (1) (2)

(2) (1) (2)

1
(3) (1) (2) (1) (2)

2

symm
spin

symm
spin

symm
spin

  

  

    





 

For example, for the He atom: 

 
1

(1) (2) (1) (2)
2

anti symm
spin    
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Symmetry of wave functions for diatomic molecules (2) 

The Pauli Exclusion Principle 

More general form: 

- The wave function for a homo-nuclear diatomic molecule must be anti-

symmetric with respect to exchange of any pair of Fermions (particles with 

half-integer spin ½, 3/2, … ), including unpaired electrons and nuclei; 

- The wave function for a homo-nuclear diatomic molecule must be symmetric 

with respect to exchange of any pair of Bosons (particles with 0 or integer spin 

1, 2, … ), including nuclei; 

- Closed shells of electrons have a net 0 spin and have symmetric wave functions 

- Examples: Total wave function for exchange of 1H nuclei in the H2 molecule  
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Symmetry of wave functions for diatomic molecules (3) 

The exchange of nuclei in a diatomic (polyatomic) molecule is performed by a 

two-step process 

1) Electrons and nuclei are inverted through the center of symmetry of the molecule 

2) The electrons alone are inverted back through the center of symmetry 

molecule elec vib rot nuc    

Symmetric for both steps for 

most ground electronic states 

(in closed-shell species) 

Symmetric 

under 

inversion 

Symm: J even (S, D, …, spherical harmonics) 

Antisymm: J odd (P, F, …, spherical harmonics) 

1 2 x 

J = 0 

J = 1 

J = 2 

J = 3 

The symmetry of nuc is chosen to give molecule the correct symmetry   
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Symmetry of wave functions for diatomic molecules (4) 

Symmetry of nuclear wave function 

1) Nuclei are Fermions (protons 1H, 13C) and molecule is antisymmetric wrt nucleus 

exchange: 

2)  Nuclei are Bosons (12C, 2H, …) and molecule is symmetric wrt nucleus exchange: 

In ortho-H2 () the nuclear spin wave function is symmetric 

In para-H2 (  ) the nuclear spin wave function is anti-symmetric 

Only symmetric rotational states (J even) are allowed 

a) If the rotational wave function is anti-symmetric (J is odd) 

nuc is symmetric wrt nucleus exchange (three states, slide 21) 

b) If the rotational wave function is symmetric (J is even) 

nuc is antisymmetric wrt nucleus exchange (one state, slide 21) 

a) If the nuclear spin is 0 (symmetric wave function) 

b) If the nuclear spin is integer  I=1 spins, 9 nuclear spin functions of which 6 are symmetric 
(ortho), and 3 antisymmetric (para) to exchange can be 
written  
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Rotation - Nuclear Spin Partition Function 

( 1) / ( 1) /
,

 even  odd

( ) 1 (2 1) 0 (2 1)J J B kT J J B kT
rot nuc

J J

q T J e J e
 

         

In the high temperature limit many rotational states are accessible: 

For spin 0 nuclei at low temperatures 

( 1) / ( 1) / ( 1) /

 even  odd  all

( 1) /
0

1
(2 1) (2 1) (2 1)

2

1
(2 1)

2 2

J J T J J T J J Tr r r

J J J

J J Tr

r

J e J e J e

T
J e dJ

  
        

   

    

  


  



For spin ½ nuclei (H2) at low temperatures 

( 1) / ( 1) /
,

 even  odd

( ) 1 (2 1) 3 (2 1)J J B kT J J B kT
rot nuc

J J

q T J e J e
 

         

x 

f(x) 

Riemann sum 
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Rotational - Nuclear Spin Partition Function 

For intermediate temperatures a more general form for the rotational partition function is:  

In the general case of diatomic molecules 

2
1

( ) 1
3 45

r r
rotE T NkT

T T

    
     

   

2

2

8
( )rot

r

IkT T
q T

h




 



2 3
1 1 4

( ) 1
3 15 315

r r r
rot

r

T
q T

T T T

       
        

      

2

,
1

( ) 1
45

r
v rotC T Nk

T

   
    

   

( 1) /
(2 1)

( )

J J Tr
J

rot

N J e

N q T

  



Probability that a rotational 

state is occupied 

Substitute the quantized energy levels of the rigid rotor in the partition function 

(no external magnetic field) 

2
, ( ) ( ) (2 1)

2
rot nuc nuc rot

r

T
q T q q T S  



Symmetry number of molecule 

(2 for homoatomics; 1 for heteroatomics) 
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Rotational partition function 

Symmetry number  

T/Θr 

C
V
,r

o
t/
N

k 

2 3
1 1 4

( ) 1
3 15 315

r r r
rot

r

T
q T

T T T

       
        

      

 = 1 for heteronuclear molecule (HCl) 

 = 2 for homonuclear molecule (Cl2) 

Typical behavior of 

rotational contribution to 

the heat capacity at 

constant V 

High temperature 

limit 
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Molecule Electronic state Θv / K Θr / K req / Å D0 / eV 

H2 

N2 

O2 

CO 

NO 

HCl 

HBr 

HI 

Cl2 

Br2 

I2 

6210 

3340 

2230 

3070 

2690 

4140 

3700 

3200 

810 

470 

310 

85.4 

2.86 

2.07 

2.77 

2.42 

15.2 

12.1 

9.0 

0.346 

0.116 

0.054 

0.740 

1.095 

1.204 

1.128 

1.150 

1.275 

1.414 

1.604 

1.989 

2.284 

2.667 

4.454 

9.76 

5.08 

9.14 

5.29 

4.43 

3.60 

2.75 

2.48 

1.97 

1.54 

Parameters for diatomic molecules 

• Θv = hν/k. The vibrational states are mostly in the low temperature limit 

• Θr = B/k. The rotational states are mostly in the high temperature limit 

• Bond breaking through kinetic energy only occurs at very high temperatures 

1
g


1
g


3
g


1 

2
1/2

1 

1 

1 

1
g


1
g


1
g
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Thermodynamic Relations for Diatomic Molecules 

The partition function of the system of N indistinguishable molecules 

Thermodynamic variables 
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,
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Q NkT
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V V

 
  

 

Ideal gas equation of state! 
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Thermodynamic Relations 

Gibbs free energy and the chemical potential  

Standard chemical potential 

 
 

1

3/2
0 2

1 2

2 2
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NkT h h kT kT


  

 



 

         
 

0 ( )
ln

G A PV T
P

NkT NkT NkT kT kT

 
    

 
 

1

3/2
5/2 2

1 2

2 2

2 8
ln ln ln 1 ln ln

1

h kT

e nuch kT

m m kTS Ve IkTe h kT
e

Nk h N h e





  
 




  
        

   

Entropy 
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Significance of CV 

Shows transfer between kinetic energy (temperature) and potential energy 

http://www.insula.com.au/physics/1221/L9.html 

Behaviour of CV for H2  

The stepwise increase in the heat capacity is a quantum mechanical behaviour 
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The 3N degrees of freedom for a polyatomic molecule in Cartesian coordinates: 

{x1,y1,z1, x2,y2,z2,…, xN,yN,zN} 

Mathematical techniques used in spectroscopy show the motion of a polyatomic 

molecule can be broken into independent contributions of: 

• Translational motion of the center of mass: {Rcm,x , Rcm,y, Rcm,z} 

• Three rotational  motions about the three principle axes of rotation (with three 

“Euler angles” as degrees of freedom) 

• 3N – 6 normal modes of vibrational which are independent of each other. 

Normal modes are described by coordinates Q1, Q2, …Q3N-6 which are 

combinations of the motion of groups of atoms 

2 21
1 1 1 1 2 2 22

( , , , , , , , , , )x Nz N N Nm
H p p U x y z x y z x y z    

 

Polyatomic molecules in the ideal gas phase 
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Normal vibrational modes for polyatomic molecules 

Normal vibrational 

modes of water 

Normal vibrational modes of methane 

Symmetric stretch 

A1 symmetry 

3025.5 cm-1 

Asymmetric stretch 

F2 symmetry 

3156.8 cm-1 

Symmetric bend 

F2 symmetry 

1367.4 cm-1 

Asymmetric bend 

E symmetry 

1582.7 cm-1 
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Vibrational Partition Function 
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Substitute the expression for the partition function 
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The Hamiltonian for normal vibrational modes for this system becomes: 
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Each normal mode is a harmonic oscillator with energy levels and frequency given 

by: 
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Rotational states of a polyatomic gas 

   
2

, 2
1 1

8
rot J

h
J J J J B

I



   

For linear polyatomic molecules (CO2), energy levels 

are the same as for the diatomic molecule 

J = 0  

J = 1  

J = 2  

2B 6B 

…
 

2

1

n

i i
i

I m r


 

The moment of inertia with respect to the center of mass 

For non-linear molecules, a set of Cartesian coordinates passing through the 

center of mass can be always chosen, called the principle axes, such that the three 

rotations about these axes, characterized by three Euler angles, are independent.  

 

The moments of inertia about these axes are IA, IB, and IC with three 

corresponding rotational constants, 

2

8 A

h
A

I


2

8 B

h
B

I


2

8 C

h
C

I


2 1J J  
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Rotational states of a polyatomic gas 

 
2

, 2
1

8
rot J

h
J J

I



 

For spherical top molecules, IA = IB = IC. The quantum 

mechanical spherical top molecule is solvable  

J = 0  

J = 1  

J = 2  … 25 states 

The characteristic rotational temperature are small and the 

high temperature limit of the partition function can be used 

2(2 1)J J  

3/2
1/2 22 22 ( 1) /8

0 2

1 8
( ) (2 1) J J h IkT

rot
IkT

q T J e dJ
h

  

 

  
 

    
 
 



σ is the symmetry number of the molecule (number of pure rotational elements 

in the point group of the molecule in addition to the identity) 

 

For methane σ = 12 

 

http://symmetry.otterbein.edu/tutorial/methane.html 

Degeneracy of 

rotational state 
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Rotational states of a polyatomic gas 

 2
2

, 2

1 1 1

8
rot JK

A C A

J Jh
K

I I I




   
    

   

For symmetric top molecules, IA = IB ≠ IC. The quantum mechanical symmetric top 

molecule is solvable  

J = 0, 1, 2, … 

K = J, J – 1, J – 2, …, – J + 1, – J  

(2 1)JK J  

2( )( 1)
0

1/2
221/2

2 2

1
( ) (2 1)

88

J KJ J C AA
rot J

CA

q T J e dJ e dK

I kTI kT

h h

 







   


 

  
   

  
  

 

The characteristic rotational temperature are small and the high temperature limit of 

the partition function can be used 

For ammonia σ = 3 

Degeneracy of 

rotational state 
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Rotational states of a polyatomic gas 

For asymmetric top molecules, IA ≠ IB ≠ IC. The quantum mechanical asymmetric 

top molecule is solvable numerically. 

1/21/2 1/2 1/2
22 21/2 1/2 3

2 2 2

88 8
( ) CA B

rot
A B C

I kTI kT I kT T
q T

h h h

  

 

      
       

               

The characteristic rotational temperature are small and the high temperature limit of 

the partition function can be used 

For water σ = 2 

3
2

( , )rotE N T Nk
3

, 2V rotC Nk
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Thermodynamic Relations for Linear Polyatomic Molecules 

The partition function of the system of N indistinguishable molecules (0 spin nuclei) 

Thermodynamic variables 

3 5

1

( , , ) 3 2

2 2 2 1

N
vj vj e

Tvjj

TE N V T D

NkT T kTe






  
     

  


,

ln

N T

Q NkT
P kT

V V

 
  

 

Ideal gas equation of state! 
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Thermodynamic Relations for Nonlinear Polyatomic Molecules 

The partition function of the system of N indistinguishable molecules 

Thermodynamic variables 
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 Ideal gas equation of state! 
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Molecule Θv / K Θr / K D0 / kcal/mol 

CO2 

H2O 

NH3 

ClO2 

SO2 

N2O 

NO2 

CH4 

CH3Cl 

 

CCl4 

3360, 954(2), 1890 

5360, 5160, 2290 

4800, 1360, 4880(2), 2330(2) 

1360, 640, 1600 

1660, 750, 1960 

3200, 850(2), 1840 

1900, 1980, 2330 

4170, 2180(2), 4320(3), 1870(3) 

4270, 1950, 1050, 4380(2), 

2140(2), 1460(2) 

660, 310(2), 1120(3), 450(3) 

0.561 

40.1, 20.9, 13.4 

13.6, 13.6, 8.92 

2.50, 0.478, 0.400 

2.92, 0.495, 0.422 

0.603 

11.5, 0.624, 0.590 

7.54, 7.54, 7.54 

7.32, 0.637, 0.637 

 

0.0823, 0.0823, 0.0823 

381.5 

219.3 

276.8 

90.4 

254.0 

263.8 

221.8 

392.1 

370.7 

 

308.8 

Parameters for polyatomic molecules 
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Chemical Equilibrium in Ideal Gas Mixtures 

( , , , , , ) ( , , ) ( , , ) ( , , ) ( , , )

! ! ! !

A B C D A B C D

NN N NCA B D

A B C D

Q N N N N V T Q N V T Q N V T Q N V T Q N V T

q q q q

N N N N





In general for a reaction  in an the ideal gas mixture: 

νAA(g) + νBB(g)  νCC(g) + νDD(g) 

C CD D
D DC C

A B A B
B BA A

N N q q

N N q q

  

   


, ,

ln
( ) ln A

A
A AN V Tj

qQ
T kT kT

N N


   
      

   

BBAACCDD  

Condition for equilibrium 

Partition function for the ideal gas mixture is a product of the partition functions of all the 

gases 

Substituting the expressions for the chemical 

potential in the condition for equilibrium 

We know that for the chemical 

potential: 
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( )

C C DD
C DDC

CA BA B
A BBA

q V q V
K T

q V q V

  

   

 

 
 

( )( ) ( )
C D

DC C D A B
C P

A B
BA

P P
K T kT K T

P P

 
   

 
  

 

Chemical Equilibrium in Ideal Gas Mixtures 

Dividing both sides by proper powers of the volume 

A temperature dependent constant 

Using the ideal gas law we get the familiar expression for the equilibrium constant 

Chemical equilibrium is probabilistic! 
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Chemical equilibrium in ideal gas mixtures (recombination reactions) 

Example: Consider a high temperature reaction: 

H(g) + H(g)  H2(g) 

 

The equilibrium condition is determined by: )H(2)H( 2
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2 2H H 1

22

H H

( )
P q V

kT
P q V

 What are the contributing factors to the 

equilibrium constant? 
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Chemical Equilibrium: Examples 

Consider a high temperature reaction 

H2(g) + Cl2(g)  2HCl(g) 

 

The equilibrium condition is determined by: 

)Cl()H()HCl(2 22     
 

H ClH Cl 2 22 2
2 2

HCl HCl

P

q V q VP P
K

P q V
 

Polyatomic reaction: Consider a high temperature reaction 

H2(g) + ½ O2(g)  H2O(g) 

 

The equilibrium condition is determined by: 

1
2 2 22

(H O) (H ) (O )   
 

  

H O2

1/21/2
H2 2

( )

( )
P

O

q V
K T

kT q V q V
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Partition functions for H2, O2, and H2O 
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Molecule Electronic state Θv / K Θr / K req / Å D0 / eV 

H2 

O2 

H2O 

6210 

2230 

5360, 5160, 2290 

85.4 

2.0 

40.1, 20.9, 13.4 

0.740 

1.204 

4.454 

5.0 

9.51 

1
g


3
g



